Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available July 1, 2026
- 
            Free, publicly-accessible full text available July 1, 2026
- 
            Free, publicly-accessible full text available May 6, 2026
- 
            Free, publicly-accessible full text available November 4, 2025
- 
            Kochmar, E; Bexte, M; Burstein, J; Horbach, A; Laarmann-Quante, R; Tack, A; Yaneva, V; Yuan, Z (Ed.)The practice of soliciting self-explanations from students is widely recognized for its pedagogical benefits. However, the labor-intensive effort required to manually assess students’ explanations makes it impractical for classroom settings. As a result, many current solutions to gauge students’ understanding during class are often limited to multiple choice or fill-in-the-blank questions, which are less effective at exposing misconceptions or helping students to understand and integrate new concepts. Recent advances in large language models (LLMs) present an opportunity to assess student explanations in real-time, making explanation-based classroom response systems feasible for implementation. In this work, we investigate LLM-based approaches for assessing the correctness of students’ explanations in response to undergraduate computer science questions. We investigate alternative prompting approaches for multiple LLMs (i.e., Llama 2, GPT-3.5, and GPT-4) and compare their performance to FLAN-T5 models trained in a fine-tuning manner. The results suggest that the highest accuracy and weighted F1 score were achieved by fine-tuning FLAN-T5, while an in-context learning approach with GPT-4 attains the highest macro F1 score.more » « less
- 
            Kochmar, E; Bexte, M; Burstein, J; Horbach, A; Laarmann-Quante, R; Tack, A; Yaneva, V; Yuan, Z (Ed.)
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available